Mishki-tomsk.ru

Мода и стиль
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Зубчатое колесо

Зубчатое колесо

Зубча́тое колесо́ или шестерня́ [1] , зубчатка [2]  — основная деталь зубчатой передачи в виде диска с зубьями на цилиндрической или конической поверхности, входящими в зацепление с зубьями другого зубчатого колеса.

Обычно термины зубчатое колесо, шестерня, зубчатка являются синонимами, но некоторые авторы называют ведущее зубчатое колесо шестернёй, а ведомое — колесом [2] . Происхождение слова «шестерня́» доподлинно неизвестно, хотя встречаются предположения о связи с числом «шесть». Однако Л. В. Куркина выводит термин из слова «шест» (в смысле «ось») [3] .

Зубчатые колёса обычно используются па́рами с разным числом зубьев с целью преобразования крутящего момента и числа оборотов валов на входе и выходе. Колесо, к которому крутящий момент подводится извне, называется ведущим, а колесо, с которого момент снимается — ведомым. Если диаметр ведущего колеса меньше, то крутящий момент ведомого колеса увеличивается за счёт пропорционального уменьшения скорости вращения, и наоборот. В соответствии с передаточным отношением, увеличение крутящего момента будет вызывать пропорциональное уменьшение угловой скорости вращения ведомой шестерни, а их произведение — механическая мощность — останется неизменным. Данное соотношение справедливо лишь для идеального случая, не учитывающего потери на трение и другие эффекты, характерные для реальных устройств.

Содержание

История [ править | править код ]

Сама по себе идея механической передачи восходит к идее ворота. По принципу своей работы шестерня является бесконечным рычагом, в котором роль второй, ведущей, шестерни играл человек, животное, вода и т.д. Человек быстро заметил, что имея более длинный рычаг, на вороте, затрачивается меньшее количество усилий. Когда и кому первому пришла идея соединить два ворота вместе доподлинно не известно. Но скорее всего это изобретение возникло относительно одновременно сразу в нескольких регионах, так как оно было логически разумным.

Применяя систему из двух колёс-воротов разного диаметра, можно не только передавать, но и преобразовывать движение. Если ведомым будет большее колесо, то на выходе мы потеряем в скорости, но зато крутящий момент этой передачи увеличится. Эта передача удобна там, где требуется «усилить движение», например, при подъеме тяжестей. Но сцепление между передаточными колесами с гладким ободом недостаточно жесткое, колёса проскальзывают. Поэтому вместо гладких колес начали использовать зубчатые.

В Древнем Египте для орошения земель уже использовались приводимые в действие быками устройства, состоявшие из деревянной зубчатой передачи и колеса с большим числом ковшей.

Вместо зубьев первоначально использовали деревянные цилиндрические или прямоугольные пальцы, которые устанавливали по краю деревянных ободьев.

Изготовленный в I веке до н.э. Антикитерский механизм состоял из десятков металлических зубчатых колес [4] .

Цилиндрические зубчатые колёса [ править | править код ]

Профиль зубьев колёс как правило имеет эвольвентную боковую форму. Однако существуют передачи с круговой формой профиля зубьев (передача Новикова с одной и двумя линиями зацепления) и с циклоидальной. Кроме того, в храповых механизмах применяются зубчатые колёса с несимметричным профилем зуба.

Параметры эвольвентного зубчатого колеса:

  • m — модуль колеса. Модулем зацепления называется линейная величина в π раз меньшая окружного шага P или отношение шага по любой концентрической окружности зубчатого колеса к π, то есть модуль — число миллиметров диаметра делительной окружности приходящееся на один зуб. Тёмное и светлое колёсо имеют одинаковый модуль. Самый главный параметр, стандартизирован, определяется из прочностного расчёта зубчатых передач. Чем больше нагружена передача, тем выше значение модуля. Через него выражаются все остальные параметры. Модуль измеряется в миллиметрах, вычисляется по формуле:
  • z — число зубьев колеса
  • p — шаг зубьев (отмечен сиреневым цветом)
  • d — диаметр делительной окружности (отмечена жёлтым цветом)
  • da — диаметр окружности вершин тёмного колеса (отмечена красным цветом)
  • db — диаметр основной окружности — эвольвенты (отмечена зелёным цветом)
  • df — диаметр окружности впадин тёмного колеса (отмечена синим цветом)
  • haP+hfP — высота зуба тёмного колеса, x+haP+hfP — высота зуба светлого колеса
Читайте так же:
После стирки джинсов появились пятна что делать

Для целей стандартизации, удобства изготовления и замены зубчатых колёс в машиностроении приняты определённые значения модуля зубчатого колеса m, представляющие собой ряд из чисел на выбор: 0,05; 0,06; 0,08; 0,1; 0,12; 0,15; 0,2; 0,25; 0,3; 0,4; 0,5; 0,6; 0,8; 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16; 25; 32; 40; 50; 60; 80; 100. [5]

Зубчатые колеса могут быть изготовлены с различным смещением режущей рейки: без смещения (нулевое зубчатое колесо или «с нулевыми зубцами»), с положительным смещением (смещение в сторону увеличения материала), с отрицательным смещением (смещение в сторону уменьшения материала).

Высота головки зуба — haP и высота ножки зуба — hfP — в случае нулевого зубчатого колеса соотносятся с модулем m следующим образом: haP = m; hfP = 1,25 m, то есть:

Отсюда получаем, что высота зуба h (на рисунке не обозначена):

Вообще из рисунка ясно, что диаметр окружности вершин da больше диаметра окружности впадин df на двойную высоту зуба h. Исходя из всего этого, если требуется практически определить модуль m зубчатого колеса, не имея нужных данных для вычислений (кроме числа зубьев z), то необходимо точно измерить его наружный диаметр da и результат разделить на число зубьев z плюс 2:

Продольная линия зуба [ править | править код ]

Цилиндрические зубчатые колеса классифицируются в зависимости от формы продольной линии зуба на:

Прямозубые колёса [ править | править код ]

Зубья расположены в радиальных плоскостях, а линия контакта зубьев обеих шестерён параллельна оси вращения. При этом оси обеих шестерён также должны располагаться строго параллельно. Прямозубые колеса имеют наименьшую стоимость, их работа имеет наивысший КПД, но, в то же время, предельный передаваемый крутящий момент таких колес ниже, чем косозубых и шевронных.

Косозубые колёса [ править | править код ]

Зубья располагаются под углом к оси вращения, а по форме образуют часть винтовой линии. Зацепление таких колёс происходит плавнее, чем у прямозубых, и с меньшим шумом. Также увеличена площадь контакта, что при тех же размерах с прямозубыми позволяет передавать больший крутящий момент. При работе косозубой пары зацепления возникает механическая осевая сила, направленная вдоль оси вращения каждого колеса и стремящаяся раздвинуть оба колеса в противоположные стороны от плоскости контакта, что обязательно требует применения упорных подшипников. Увеличенная площадь трения зубьев косозубого зацепления вызывает дополнительные потери мощности на нагрев. В целом, косозубые колёса применяются в механизмах, требующих передачи большого крутящего момента на высоких скоростях, либо имеющих жёсткие ограничения по шумности.

Шевронные колеса [ править | править код ]

Изобретение шевронного профиля зуба часто приписывают Андре Ситроену, однако на самом деле он лишь выкупил патент на более совершенную схему, которую придумал польский механик-самоучка [6] . Зубья таких колёс изготавливаются в виде буквы «V» (либо они получаются стыковкой двух косозубых колёс со встречным расположением зубьев). Шевронные колёса решают проблему осевой силы. Осевые силы обеих половин такого колеса взаимно компенсируются, поэтому отпадает необходимость в установке валов на упорные подшипники. При этом передача является самоустанавливающейся в осевом направлении, по причине чего в редукторах с шевронными колесами один из валов устанавливают на плавающих опорах (как правило — на подшипниках с короткими цилиндрическими роликами).

Колёса с круговыми зубьями [ править | править код ]

Передача на основе колёс с круговыми зубьями (Передача Новикова) имеет ещё более высокие ходовые качества, чем косозубые — высокую нагрузочную способность зацепления, высокую плавность и бесшумность работы. Однако они ограничены в применении сниженными, при тех же условиях, КПД и ресурсом работы, такие колёса заметно сложнее в производстве. Линия зубьев у них представляет собой окружность радиуса, подбираемого под определённые требования. Контакт поверхностей зубьев происходит в одной точке на линии зацепления, расположенной параллельно осям колёс.

Читайте так же:
Замена катушки зажигания на двигателе 16 BSE

Эвольвентная поверхность зубчатого венца

Сопряженные поверхности – поверхности, которые постоянно или с определенной периодичностью входят в зацепление друг с другом.

По отношению к начальным окружностям сопряженные поверхности могут занимать различные положения. Правильным положением является то, которое удовлетворяет основной теореме зацепления, теореме о мгновенном передаточном отношении, которое формулируется следующим образом:

Общая нормаль, проведенная в точке контакта сопряженных поверхностей, проходит через линию центров О1О2 и делит эту линию на части, обратно пропорциональные отношению угловых скоростей.

"-" если зацепление внешнее;

"+" если зацепление внутреннее;

Сопряженные профили должны удовлетворять следующим требованиям:

1. быть простыми в изготовлении (технологичными);

2. иметь высокий КПД.

Таким требованиям удовлетворят эвольвентные профили.

4.3 Эвольвента и ее свойства.

Эвольвента образуется путем перекатывания производящей прямой KyNy без скольжения по основной окружности радиуса rb .

Радиус произвольной окружности – ry . ONy || t t

Из треугольника ONyKy следует, что

Т.к. KyNy перекатывается без скольжения по основной окружности, то

Уравнения (1) И (2) являются уравнениями эвольвенты в параметрической форме.

a у – угол профиля эвольвенты для точки Ку , лежащей на произвольной окружности.

a – угол профиля эвольвенты для точки К , лежащей на делительной окружности радиуса r .

Угол профиля эвольвенты для точки Кb , лежащей на основной окружности, равен нулю: a b =0 .

Свойства эвольвенты .

1. Форма эвольвенты зависит от радиуса основной окружности. При стремлении rb ,эвольвента превращается в прямую линию (пример рейка).

2. Производящая прямая KyNy является нормалью к эвольвенте в данной тоске.

3. Эвольвента начинается от основной окружности. Внутри основной окружности точек эвольвенты нет.

4.4 Элементы эвольвентного зубчатого колеса (рис.8-86).

Делительной окружностью называется окружность стандартных шага р , модуля m и угла профиля a .

Шаг – расстояние между одноименными точками двух соседних профилей зубьев, измеренные по дуге соответствующей окружности.

Модулем называется часть диаметра делительной окружности, приходящаяся на один зуб.

Модуль m, [мм] – стандартная величина и определяется по справочникам, исходя из трех рядов:

1 ряд – наиболее предпочтительный;

2 ряд – средней предпочтительности;

3 ряд – наименее предпочтительный.

Модуль является масштабным фактором высоты зуба. Чем больше модуль, тем выше высота зуба, тем больше плечо силы P, вызывающей изгибные напряжения у основания зуба.

Угол профиля – угол между касательной к эвольвенте в данной точке и радиус-вектором этой точки (см. чертеж эвольвенты).

Угол профиля для точки, лежащей на делительной окружности, является величиной стандартной и равной 20 о (хотя лучше 25 о ).

1. Основные расчетные зависимости для определения параметров эвольвентного зубчатого колеса.

1. Число зубьев z; 2. Модуль m; 3. Ширина венца b; 4.Высота зуба h; 5. Диаметры зубчатого колеса: делительный d=mz; вершин зубьев da; впадин df ; сновной db; произвольный dy; 6. Окружной шаг: делительный p=πm; по произвольной окружности Py; Окружная толщина зуба S, Sa; окружная толщина впадины e; 7. Угловой шаг τ=360˚/z; угловая толщина зуба 2 ψ; 8. Угол профиля зуба на делительной окружности α ; 9. Эвольветные углы: inv αy ; inv αa;10. Радиус кривизны перехода профиля ρf.

Рис.8-86. Элементы и основные параметры эвольвентного прямозубого колеса.

Из (1) следует, что радиус делительной окружности

модуль по ГОСТу определяется

2 p . r = p . z à

p = p . m ( 4 )

по основной окружности

2. Виды зубчатых колес.

s = + Δ . m (9)

где Δкоэффициент изменения толщины зуба .

В зависимости от знака коэффициента Δ различают виды зубчатых колес:

Читайте так же:
Почему сашка рискуя жизнью пополз за валенками

1. Δ = 0 s = e = p/2 нулевое зубчатое колесо;

2. Δ > 0 s > e положительное зубчатое колесо;

3. Δ < 0 s < e отрицательное зубчатое колесо.

4. Эвольвентная зубчатая передача и ее свойства (рис. 11-86).

aw — межосевое расстояние; αw — угол зацепления;

ym — воспринимаемое смещение; C — радиальный зазор;

g -длина линии зацепления N1N2 ; gα — длина активной линии зацепления;

Р — полюс зацепления; rw1, rw2— радиусы начальных окружностей;

φα1 — угол торцевого перекрытия зубчатого колеса.

Рис.11-86. Элементы и основные параметры эвольвентной зубчатой передачи

Эвольвентную зубчатую передачу составляют, как минимум, из 2-х зубчатых колес, при этом в рассмотрение вводится две начальные окружности радиусами rw1 и rw2 .

Меньшее зубчатое колесо в обычной понижающей зубчатой передаче называется шестерня .

Вместо производящей прямой здесь вводится в рассмотрение линия зацепления N1N2 , которая одновременно касается 2-х основных окружностей rb1 и rb2 .

Линия зацепления является геометрическим местом точек контакта сопряженных эвольвентных профилей. В точке В1 пара эвольвент, которые в данный момент времени контактируют в точке К , вошли в зацепление. В точке В2 эта же пара эвольвент из зацепления выходят.

На линии зацепления N1N2 все взаимодействующие эвольвенты при зацеплении касаются друг друга. Вне участка N1N2 эвольвенты пересекаются, и если такое случится, то произойдет заклинивание зубчатого колеса (9-86).

Рис.9-86. Интерференция эвольвет при внешнем зацеплении

а) интерференция эвольвет

Для передачи, составленной из нулевых зубчатых колес a w =20 o

Для передачи, составленной из положительных з. к. a w >20 o

Для передачи, составленной из отрицательных з. к. a w <20 o

c=c * . mрадиальный зазор , величина стандартная, необходим для нормального обеспечения смазки.

c *коэффициент радиального зазора , по ГОСТ c * =0.25 (c * =0.35).

Расстояние между делительными окружностями у . m – это воспринимаемое смещение.

укоэффициент воспринимаемого смещения , он имеет знак, и в зависимости от знака различают:

1. у=0 у . m=0 – нулевая зубчатая передача;

2. у>0 у . m>0 – положительная зубчатая передача;

3. у<0 у . m<0 – отрицательная зубчатая передача;

Свойства эвольвентного зацепления .

1. Эвольвентное зацепление молочувствительно к погрешностям изготовления, т.е. при отклонении межосевого расстояния от номинала передаточное отношение зубчатой передачи не изменится.

2. Линия зацепления N1N2 является общей нормалью к сопряженным эвольвентным профилям.

Эвольвентное зубчатое колесо и его параметры.

Простая зубчатая передача состоит из двух подвижных звеньев – зубчатых колес. Поверхность, отделяющая зубья от тела зубчатого колеса называется поверхностью впадин. Поверхность, ограничивающая зубья со стороны, противоположной телу колеса называется поверхностью вершин зубьев. Пространство между двумя соседними зубьями называется впадина. Поверхность, ограничивающая зуб со стороны впадины называется боковой поверхностью зуба. Боковая поверхность состоит из главной и переходной поверхностей. Главная поверхность эта та, которая контактирует с главной боковой поверхностью второго колеса, обеспечивая заданное передаточное отношение. Главной поверхностью чаще всего является эвольвента. Переходная поверхность соединяет главную боковую поверхность с поверхностью впадин.

Параметры эвольвентного зубчатого колеса

Существует три параметра зубчатого колеса, которые можно определить «на глаз» при наличии этого зубчатого колеса и 2 которые можно только рассчитать.

Число зубьев колеса , можно подсчитать по готовому колесу (при проектировании этим параметром задаются).

Окружность вершин, окружность впадин . При наличии колеса могут быть измерены, например, штангенциркулем.Окружность вершин– это окружность, ограничивающая зуб со стороны противоположной телу колеса.Окружность впадин– это окружность, ограничивающая зуб со стороны тела колеса. Зная эти окружности можно получить высоту зуба колеса:.

Для получения эвольвентного профиля необходимо знать расположение основной окружности колеса — рассчитывается.

Делительная окружность – делит зуб на ножку зуба и головку зуба.Делительной окружностьюназывается окружность стандартного шага, модуля и угла давления (или окружность, проходящая через точку эвольвенты для которой профильный угол).

Читайте так же:
У джинсов вытянулись коленки как исправить

Модулем зацепленияназывается линейная величина враз меньшая окружного шага или отношение шага по любой концентрической окружности зубчатого колеса к. В зависимости от окружности, по которой определен модуль, различают делительный, основной, начальный. Для косозубых колес еще и нормальный, торцевой и осевой модули. В ряде стран используется величина обратная модулю, которая называетсяпитчем. Питч (диаметральный) число зубьев колеса, приходящееся на дюйм диаметра. Исходя из этого,модульможно определить как число миллиметров диаметра, приходящееся на один зуб. На колесе можно провести бесчисленное число окружностей, на каждой из которых будет свой модуль. Для ограничения этого числа ГОСТом введен стандартный ряд модулей. Стандартной модуль определяется поделительной окружности.

Окружным шагом, или шагом, называется расстояние между одноименными точками профилей двух соседних зубьев, измеренное по дуге любой окружности (под одноименными понимаются правые или левые профили зуба). Обозначается. Достаточно часто вводится понятиеуглового шага— центральный угол, соответствующий дуге окружного шага по делительной окружности. Шаг колеса делится на толщину зубаи ширину впадины:.Толщина зуба расстояние по дуге соответствующей окружности между разноименными точками профилей зуба. Ширина впадины расстояние по дуге соответствующей окружности между разноименными точками профилей соседних зубьев.

— угловая толщина зуба.— центральный угол соответствующий дуге.

— окружность произвольного радиуса.

Уроки по SolidWorks

petr-m

Урок посвящен построению зубчатого колеса с эвольвентным профилем зуба. Урок состоит из двух частей. В первой части выложена теория, формулы для расчета и один из способов графического построения эвольвентного профиля зуба.
Во второй части (видео) показан способ построения модели зубчатого колеса с использованием графических построений в первой части урока.

Часто задаваемые вопросы:

*Что такое эвольвента (эволюта)?
*Как построить эвольвенту?
*Как построить зубчатое колесо в программе SolidWorks?
*Формулы для расчета зубчатого колеса?
*Как нарисовать эвольвентный профиль зуба зубчатого колеса?

Итак, начнем с теории.

Эвольвентное зацепление позволяет передавать движение с постоянным передаточным отношением. Эвольвентное зацепление — зубчатое зацепление, в котором профили зубьев очерчены по эвольвенте окружности.
Для этого необходимо чтобы зубья зубчатых колёс были очерчены по кривой, у которой общая нормаль, проведённая через точку касания профилей зубьев, всегда проходит через одну и туже точку на линии, соединяющей центры зубчатых колёс, называемую полюсом зацепления.

Параметры зубчатых колёс

Основной теореме зацепления удовлетворяют различные кривые, в том числе эвольвента и окружность, по которым чаще всего изготавливают профили зубьев зубчатого колеса.

В случае, если профиль зуба выполнен по эвольвенте, передача называется эвольвентной.

Для передачи больших усилий с помощью зубчатых механизмов используют зацепление Новикова, в котором профиль зуба выполнен по окружности.

Окружности, которые катятся в зацеплении без скольжения друг по другу, называются начальными (D).

Окружности, огибающие головки зубьев зубчатых колёс, называются окружностями головок (d1).

Окружности, огибающие ножки зубьев зубчатых колёс, называются окружностями ножек (d2).

Окружности, по которым катятся прямые, образующие эвольвенты зубьев первого и второго колёс, называются основными окружностями.

Окружность, которая делит зуб на головку и ножку, называется делительной окружностью (D).

Для нулевых (некорригированных) колёс начальная и делительная окружности совпадают.

Расстояние между одноимёнными точками двух соседних профилей зубьев зубчатого колеса называется шагом по соответствующей окружности.

Шаг можно определить по любой из пяти окружностей. Чаще всего используют делительный шаг p =2r/z, где z – число зубьев зубчатого колеса. Чтобы уйти от иррациональности в расчётах параметров зубчатых колёс, в рассмотрение вводят модуль, измеряемый в миллиметрах, равный

Читайте так же:
Почему джинсы собираются складками сзади под попой

Модуль зубчатого колеса, геометрический параметр зубчатых колёс. Для прямозубых цилиндрических зубчатых колёс модуль m равен отношению диаметра делительной окружности (D) к числу зубьев z или отношению шага p к числу «пи» .

Модуль зубчатого колеса стандартизованы, что является основой для стандартизации других параметров зубчатых колёс.

Основные формулы для расчета эвольвентного зацепления:

Исходными данными для расчета как эвольвенты, так и зубчатого колеса являются следующие параметры: m — Модуль — часть диаметра делительной окружности приходящаяся на один зуб. Модуль — стандартная величина и определяется по справочникам. z — количество зубьев колеса. ? («альфа») — угол профиля исходного контура. Угол является величиной стандартной и равной 20°.

Делительный диаметр рассчитывается по формуле:

Диаметр вершин зубьев рассчитывается по формуле:

d1=D+2m

Диаметр впадин зубьев рассчитывается по формуле:

d2=D-2*(c+m)

где с — радиальный зазор пары исходных контуров. Он определяется по формуле:

с = 0,25m

Диаметр основной окружности, развертка которой и будет составлять эвольвенту, определяется по формуле:

d3 = cos ? * D

От автора. Я нашел в интернете полезную программку в Excel 2007. Это автоматизированная табличка для расчета всех параметров прямозубого зубчатого колеса.

Скачать Скачать с зеркала

Итак, приступим к графическому построению профиля зубчатого колеса.

  1. Изобразите делительный диаметр с диаметром D, и центром шестерни O. Окружность показана красным цветом.
  2. Изобразите диаметр вершин зубьев (d1) с центром в точке O с радиусом большим на высоту головки зуба(зелёного цвета).
  3. Изобразите диаметр впадин зубьев (d2) с центром в точке O с радиусом меньшим на высоту ножки зуба (голубого цвета цвета).

  1. Проведите касательную к делительному диаметру (желтая).
  2. В точке касания под углом ? проведите линию зацепления, оранжевого цвета.
  3. Изобразите окружность касательную к линии зацепления, и центром в точке O. Эта окружность является основной и показана тёмно синего цвета.

  1. Отметьте точку A на диаметре вершин зубьев.
  2. На прямой соединяющие точки A и O отметьте точку B находящуюся на основной окружности.
  3. Разделите расстояние AB на 3 части и отметьте, точкой C, полученное значение от точки A в сторону точки B на отрезке AB.

  1. От точки C проведите касательную к основной окружности.
  2. В точке касания отметьте точку D.
  3. Разделите расстояние DC на четыре части и отметьте, точкой E, полученное значение от точки D в сторону точки C на отрезке DC.

  1. Изобразите дугу окружности с центром в точке E, что проходит через точку C. Это будет часть одной стороны зуба, показана оранжевым.
  2. Изобразите дугу окружности с центром в точке H, радиусом, равным толщине зуба (s). Место пересечения с делительным диаметром отметьте точкой F. Эта точка находится на другой стороне зуба.

  1. Изобразите ось симметрии проходящую через центр О и середину расстояния FH.
  2. Линия профиля зуба отображенная зеркально относительно этой оси и будет второй стороной зуба.

Вот и готов профиль зуба прямозубого зубчатого колеса. В этом примере использовались следующие параметры:

  1. Модуль m=5 мм
  2. Число зубьев z=20
  3. Угол профиля исходного контура ?=20 0
  1. Делительный диаметр D=100 мм
  2. Диаметр вершин зубьевd1=110 мм
  3. Диаметр впадин зубьевd2=87.5 мм
  4. Толщина зубьев по делительной окружности S=7.853975 мм

На этом первая часть урока является завершенной. Во второй части (видео) мы рассмотрим как применить полученный профиль зуба для построения модели зубчатого колеса. Для полного ознакомления с данной темой («зубчатые колеса и зубчатые зацепления», а также «динамические сопряжения в SolidWorks») необходимо вместе с изучением этого урока изучать урок №24.

Еще скажу пару слов о специальной программе, производящей расчет зубчатых колес и генерацию модели зубчатого колеса для SolidWorks. Это программа Camnetics GearTrax.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector